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Jiunn-Ming Wang, S.R. Mane and Nathan Towne
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Abstract

Caporaso, Barletta and Neil (CBN) found in a solution to
the problem of the single-bunch beam breakup in a linac[1].
However, their method applies only to the case of a beam
traveling in a strongly betatron-focused linac under the in-
fluence of the resistive wall impedance. We suggest in this
paper a method for dealing with the same problem. Our
methods is more general; it applies to the same problem
under any impedance, and it applies to a linac with or with-
out external betatron focusing.

1 CBN RESULTS

We denote the location along the linac by the variable z.
The beam is taken to be traveling in the positive z direc-
tion, and the entrance to the linac is located at z = 0. We
assume throughout this paper that the charged particles are
uniformly distributed longitudinallywithin the unperturbed
bunched beam. For z > 0, the equation of motion for a
beam particle is

�
@2

@z2
+ k2y

�
y(�; z) =

Z �

0

d� 0g(� � � 0)y(� 0; z) ; (1)

where � = t � z=v describes the relative longitudinal po-
sition of the particle inside the bunch, v is the particle ve-
locity, ky is the wave number representing the betatron fo-
cusing strength, and g(� ) is the wake function. With this
definition of � , �1 > �2 implies that the particle 2 is in
front of the particle 1; � = 0 corresponds to the head of the
bunch. Assuming the initial condition y 0(� ) � y(�; z = 0)
and y00(� ) � y0(�; z = 0) to be given, where y0 denotes
the derivative of y with respect to z, we wish to find y(�; z)
from the equation (1) for all z > 0. The wake function
vanishes for � < 0, and the quantity

~g(s) =

Z
1

0

d�e�s�g(� ) : (2)

is proportional to the longitudinal beam impedance.
If the source of the wakefield is the resistive wall of a

circularly cylindrical beam pipe, then

g(� ) = 
5=2=(2v2
p
� ) for � > 0; (3)

~g(s) =
p
�
5=2=(2v2

p
s) ; (4)

where 
5=2 = (2eIv=�mc
b3)
p

1=��0� with � the con-
ductivity, b the radius of the beam pipe, and 
 is the
relativistic energy coefficient. For the special case of a
strongly focused linac with the resistive wall impedance,
CBN found, by taking advantage of the specific form of

the wake function (3), the solution of (1) to be

y(�; z) =
d0
2�i

Z i1

�i1

ds

s
exp(A2s)

� cos
q
k2yz

2 � 2kyz=
p
s ; (5)

where A � p��z
5=2=4kyv2, and the initial condition is
taken to be y0(� ) = d0 =constant, and y00(� ) = 0 for all � .
Recall that to each beam particle is associated a value of � .
The asymptotic behaviour of the CBN solution (5) for the
beam particle when z !1 is[1]

y(�; z) �! exp[ (z=lk)
2=3 ] ; (6)

with the growth length given by

lk = (2=3)3=2
8kyv2p
�� 
5=2

: (7)

The method these authors employed in finding the so-
lution (5) does not apply to the cases of the wake func-
tion other than the specific one given by (3). Nor does the
method apply to the resistive wall case when ky = 0. We
propose an alternative method in the next section, which
is applicable to any impedance in a linac with or without
betatron focusing.

2 A GENERAL SOLUTION

The case of a general wake function g(� ) is treated in this
section[3]. Also, ky 6= 0 is not assumed. We want to solve
the transient problem (the initial value problem) of (1) cor-
responding to a bunch with a finite bunch length l � ; the
beam particles satisfy � 2 [0; l� ].

In terms of the Laplace-transformed quantity

~y(s; z) =

Z
1

0

d�e�s�y(�; z) ; (8)

the equation of motion (1) is equivalent to

�
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+ k2y

�
~y(s; z) = ~g(s)~y(s; z) : (9)

Now apply another Laplace transform

~y(s; p) =

Z
1

0

dze�pz~y(s; z) : (10)

Then y is related to ~y by an inverse Laplace transform

y(�; z) =
1

(2�i)2

Z
ds

Z
dp es�+pz ~y(s; p) ; (11)



where, in terms of some positive numbers s1 and p1, the
integration regions in s and p are (s1 � i1; s1 + i1) and
(p1 � i1; p1 + i1), respectively; the Bromwich contours
are understood. Combining (9) and (10), we have

~y(s; p) =
s~y0(s) + ~y00(s)

p2 + k2y � ~g(s)
; (12)

where ~y0(s) and ~y00(s) are, respectively, the Laplace trans-
forms of y0(t) and y00(t). Substituting the last equation into
(11) and performing the integration in the p variable, we
obtain the followinggeneral transient solution to the single-
bunch beam breakup problem:

y(�; z) =
1

2�i

Z s1+i1

s1�i1

ds es� [ ~y0(s) cos kcz

+
1

kc
~y00(s) sin kcz ] ; (13)

where the coherent wave number kc is a function of s given
by

k2c (s) = k2y � ~g(s) : (14)

Suppose the initial condition is y 00(� ) = 0 for all � , and

y0(� ) =

�
d0; if l� > � > 0;
0; otherwise ;

(15)

then this condition is for our purpose equivalent to the con-
dition

y0(� ) =

�
d0; if 1 > � > 0;
0; otherwise ;

(16)

since from causality, the fictitious particles of the last con-
dition in the range 1 > � > l� can not influence the mo-
tion of the beam particles in the range 0 < � < l� (tail can
not affect the head.) Thus we can set

~y0(s) = d0

Z
1

0

d�e�s� = d0=s; (17)

and the transient solution (13) simplifies to

y(�; z) =
d0
2�i

Z s1+i1

s1�i1

ds

s
es� cos kc(s)z : (18)

This is the general solution to the single-bunch, beam-
breakup problem corresponding to the initial condition
y00(� ) = 0 for all � , and (15).

3 RESISTIVE WALL CASE

In this section we discuss the solution (18) when the wake-
field is that due to the resistive beam-chamber wall for both
the cases with and without external focusing represented by
ky. Let us start by repeating the solution that was derived
above,

y(�; z) =
d0
2�i

Z s1+i1

s1�i1

ds

s
es� cos kc(s)z ; (19)

and
k2c(s) = k2y �

p
�
5=2=(2v2

p
s) : (20)

It is instructive to see how the above solution is related to
the CBN solution (5). If we perform a change of variables

s �!
� p

� z
5=2

4kyv2

�2
s (21)

in the equations (19) and (20), we obtain the equation (5).
Note that the last transformation of variable is singular at
ky = 0. This explains why, while the solution (19) with
(20) is applicable to the case of vanishing ky, the CBN so-
lution is not.

We calculate now the growth length of the resistive-wall
case when there is no external betatron focusing: ky = 0.
The asymptotic behavior for large z of our solution (19)
with

k2c(s) = �
p
�
5=2=(2v2

p
s) (22)

can be obtained by the method of steepest descent. The
result is

y �! exp[ (z=l0)
4=5 ] ; (23)

where the growth length is,

l0 =
4

55=4 a1=2 �1=4
; (24)

and

a �
p
�
5=2

2v2
: (25)

We give in the next section a numerical example to illus-
trate the results of this section.

4 EXAMPLE

Consider the example of an electron beam passing through
a cylindrical beam pipe in a wiggler magnet of peak mag-
netic field BW = 0:65 Tesla. The conductivity and the
radius of the beam pipe are, respectively, � = 106/(Ohm
m) and b = 2:5 mm. The beam energy is 250 MeV, the
beam current I = 300 A, and the bunch length l�=10 ps.

Let us first consider the case of a planar wiggler. The
magnetic field is in the y direction and Bx = 0. The beam
is betatron focused in the y direction but not in the x direc-
tion. Substituting these numbers into the formulae of the
previous sections, we obtain

ly = 46 m (26)

and
lx = 3 m : (27)

The result ly � 15 lx for this example indicates that for a
planar wiggler, the contrast of the magnitudes of the beam
instabilities in the two directions can be quiite striking.

Consider now an alternative wiggler. It has been pointed
out[4] that by adopting a wiggler with a suitably chosen
parabolic surface, the focusing effects in the x and the y
directions can be equalized. If the same magnetic field
BW = 0:65 Tesla is chosen for such a wiggler, we obtain
lx = ly = 46=

p
2 = 33 m.



5 CONCLUSION

We found a general solution to the problem of single-bunch
beam breakup in a periodic linac. The results for the case
of the resistive-wall wakefield is presented in detail, and
the reason for the non applicability of the CBN method for
the case of zero-focusing resistive-wall case is given. The
single-bunch beam-breakup problem caused by other forms
of the impedance will be presented elsewhere[5].
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